Back to Search Start Over

Any Monotone Boolean Function Can Be Realized by Interlocked Polygons

Authors :
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Demaine, Erik D.
Demaine, Martin L.
Uehara, Ryuhei
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Demaine, Erik D.
Demaine, Martin L.
Uehara, Ryuhei
Source :
MIT web domain
Publication Year :
2011

Abstract

We show how to construct interlocked collections of simple polygons in the plane that fall apart upon removing certain combinations of pieces. Precisely, interior-disjoint simple planar polygons are interlocked if no subset can be separated arbitrarily far from the rest, moving each polygon as a rigid object as in a sliding-block puzzle. Removing a subset S of these polygons might keep them interlocked or free the polygons, allowing them to separate. Clearly freeing removal sets satisfy monotonicity: if S S [prime] and removing S frees the polygons, then so does S [prime]. In this paper, we show that any monotone Boolean function f on n variables can be described by m > n interlocked polygons: n of the m polygons represent the n variables, and removing a subset of these n polygons frees the remaining polygons if and only if f is 1 when the corresponding variables are 1.

Details

Database :
OAIster
Journal :
MIT web domain
Notes :
application/pdf, en_US
Publication Type :
Electronic Resource
Accession number :
edsoai.ocn796397858
Document Type :
Electronic Resource