Back to Search
Start Over
In silico identification of NF-kappaB-regulated genes in pancreatic beta-cells.
- Source :
- BMC bioinformatics, 8
- Publication Year :
- 2007
-
Abstract
- BACKGROUND: Pancreatic beta-cells are the target of an autoimmune attack in type 1 diabetes mellitus (T1DM). This is mediated in part by cytokines, such as interleukin (IL)-1beta and interferon (IFN)-gamma. These cytokines modify the expression of hundreds of genes, leading to beta-cell dysfunction and death by apoptosis. Several of these cytokine-induced genes are potentially regulated by the IL-1beta-activated transcription factor (TF) nuclear factor (NF)-kappaB, and previous studies by our group have shown that cytokine-induced NF-kappaB activation is pro-apoptotic in beta-cells. To identify NF-kappaB-regulated gene networks in beta-cells we presently used a discriminant analysis-based approach to predict NF-kappaB responding genes on the basis of putative regulatory elements. RESULTS: The performance of linear and quadratic discriminant analysis (LDA, QDA) in identifying NF-kappaB-responding genes was examined on a dataset of 240 positive and negative examples of NF-kappaB regulation, using stratified cross-validation with an internal leave-one-out cross-validation (LOOCV) loop for automated feature selection and noise reduction. LDA performed slightly better than QDA, achieving 61% sensitivity, 91% specificity and 87% positive predictive value, and allowing the identification of 231, 251 and 580 NF-kappaB putative target genes in insulin-producing INS-1E cells, primary rat beta-cells and human pancreatic islets, respectively. Predicted NF-kappaB targets had a significant enrichment in genes regulated by cytokines (IL-1beta or IL-1beta + IFN-gamma) and double stranded RNA (dsRNA), as compared to genes not regulated by these NF-kappaB-dependent stimuli. We increased the confidence of the predictions by selecting only evolutionary stable genes, i.e. genes with homologs predicted as NF-kappaB targets in rat, mouse, human and chimpanzee. CONCLUSION: The present in silico analysis allowed us to identify novel regulatory targets of NF-kappaB using a supervised classif<br />Journal Article<br />Research Support, Non-U.S. Gov't<br />info:eu-repo/semantics/published
Details
- Database :
- OAIster
- Journal :
- BMC bioinformatics, 8
- Notes :
- 1 full-text file(s): application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.ocn764587257
- Document Type :
- Electronic Resource