Back to Search
Start Over
Magneto-optical study of electron occupation and hole wave functions in stacked self-assembled InP quantum dots
- Publication Year :
- 2001
-
Abstract
- We have studied the magnetophotoluminescence of doubly stacked layers of self-assembled InP quantum dots in a GaInP matrix. 4.0±0.1 monolayers of InP were deposited in the lower layer of each sample, whereas in the upper layer 3.9, 3.4, and 3.0 monolayers were used. Low-temperature photoluminescence measurements in zero magnetic field are used to show that, in each case, only one layer of dots is occupied by an electron, and imply that when the amount of InP in both layers is the same, the dots in the upper layer are larger. High-field photoluminescence data reveal that the position and extent of the hole wave function are strongly dependent on the amount of InP in the stack. ©2001 American Institute of Physics.
Details
- Database :
- OAIster
- Notes :
- application/pdf, https://eprints.lancs.ac.uk/id/eprint/2284/7/Hayne_APL_79_45_2001_.pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.ocn692393145
- Document Type :
- Electronic Resource