Back to Search Start Over

A Single-Point Modeling Approach for the Intercomparison and Evaluation of Ozone Dry Deposition Across Chemical Transport Models (Activity 2 of AQMEII4)

Authors :
Olivia E Clifton
Donna Schwede
Christian Hogrefe
Jesse O Bash
Sam Bland
Philip Cheung
Mhairi Coyle
Lisa Emberson
Johannes Flemming
Erick Fredj
Stefano Galmarini
Laurens Ganzeveld
Orestis Gazetas
Ignacio Goded
Christopher D Holmes
László Horváth
Vincent Huijnen
Qian Li
Paul A Makar
Ivan Mammarella
Giovanni Manca
J William Munger
Juan L Pérez-Camanyo
Jonathan Pleim
Limei Ran
Roberto San Jose
Sam J Silva
Ralf Staebler
Shihan Sun
Amos P K Tai
Eran Tas
Timo Vesala
Tamás Weidinger
Zhiyong Wu
Leiming Zhang
Source :
Atmospheric Chemistry and Physics. 23(17)
Publication Year :
2023
Publisher :
United States: NASA Center for Aerospace Information (CASI), 2023.

Abstract

A primary sink of air pollutants and their precursors is dry deposition. Dry deposition estimates differ across chemical transport models, yet an understanding of the model spread is incomplete. Here, we introduce Activity 2 of the Air Quality Model Evaluation International Initiative Phase 4 (AQMEII4). We examine 18 dry deposition schemes from regional and global chemical transport models as well as standalone models used for impact assessments or process understanding. We configure the schemes as single-point models at eight Northern Hemisphere locations with observed ozone fluxes. Single-point models are driven by a common set of site-specific meteorological and environmental conditions. Five of eight sites have at least 3 years and up to 12 years of ozone fluxes. The interquartile range across models in multiyear mean ozone deposition velocities ranges from a factor of 1.2 to 1.9 annually across sites and tends to be highest during winter compared with summer. No model is within 50 % of observed multiyear averages across all sites and seasons, but some models perform well for some sites and seasons. For the first time, we demonstrate how contributions from depositional pathways vary across models. Models can disagree with respect to relative contributions from the pathways, even when they predict similar deposition velocities, or agree with respect to the relative contributions but predict different deposition velocities. Both stomatal and nonstomatal uptake contribute to the large model spread across sites. Our findings are the beginning of results from AQMEII4 Activity 2, which brings scientists who model air quality and dry deposition together with scientists who measure ozone fluxes to evaluate and improve dry deposition schemes in the chemical transport models used for research, planning, and regulatory purposes.

Subjects

Subjects :
Geophysics

Details

Language :
English
ISSN :
16807324 and 16807316
Volume :
23
Issue :
17
Database :
NASA Technical Reports
Journal :
Atmospheric Chemistry and Physics
Notes :
80NSSC20M0282, , EC EVK2-CT2001-00105, , GOCE-CT-2003-505572, , UK DEFRA 1/3/201, , ISF 1787/15, , NSF 1848372, , AFF 337549, , CA20108, , NE/V02020X/1
Publication Type :
Report
Accession number :
edsnas.20230013747
Document Type :
Report
Full Text :
https://doi.org/10.5194/acp-23-9911-2023