Back to Search Start Over

FORECASTING WHEAT YIELD USING REMOTE SENSING: THE ARYA FORECASTING SYSTEM

Authors :
B. Franch
E. Vermote
S. Skakun
A. Santamaria-Artigas
N. Kalecinski
J.-C. Roger
I. Becker-Reshef
B. Barker
J.A. Sobrino
C. Justice
Source :
IEEE Explor.
Publication Year :
2021
Publisher :
United States: NASA Center for Aerospace Information (CASI), 2021.

Abstract

In this study we present a model to forecast wheat yield based on the evolution of the Difference Vegetation Index (DVI)and the Growing Degree Days (GDD), presented in Franch et al. (2015), but adapted to Franch et al. (2019) model. Additionally, we explore how the Land Surface Temperature (LST) can be included into the model and if this parameter adds any value to the model when combined with the optical information. This study is applied toMODIS data at 1km resolution to monitor the national and state level yield of winter wheat in the United States and Ukraine from 2001 to 2019.

Details

Language :
English
Database :
NASA Technical Reports
Journal :
IEEE Explor
Notes :
437949.02.01.02.57, , 80NSSC19M0222, , 80NSSC21M0080, , 80NSSC21D0002
Publication Type :
Report
Accession number :
edsnas.20220000619
Document Type :
Report
Full Text :
https://doi.org/10.1109/IGARSS47720.2021.9554274