Back to Search Start Over

Recent Improvements in the Dart Model for Atmosphere, Topography, Large Landscape, Chlorophyll Fluorescence, Satellite Image Inversion

Authors :
J. P. Gastellu-Etchegorry
Y. Wang
O. Regaieg
T. Yin
Z. Malenovsky
Z. Zhen
X. Yang
Z. Tao
L. Landier
A. Al Bitar
Deschamps
N. Lauret
J. Guilleux
E. Chavanon
B. Cao
J. Qi
A. Kallel
Z. Mitraka
N. Chrysoulakis
B Cook
D Morton
Source :
IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium.
Publication Year :
2021
Publisher :
United States: NASA Center for Aerospace Information (CASI), 2021.

Abstract

Physical models simulating the radiative budget (RB) and remote sensing (RS) observation of three-dimensional (3D) landscapes are critical to better understand human and natural components of the Earth system and further develop RS technology. DART is one of the most comprehensive 3D models of Earth-atmosphere optical radiative transfer (RT), from ultraviolet (UV) to thermal infrared (TIR). It simulates the optical signal of proximal, aerial and satellite imaging spectrometers and laser scanners, the 3D RB and solar induced chlorophyll fluorescence (SIF) signal, for any urban or natural landscape and any experimental or instrument configuration. It is freely available for research and teaching activities (https://dart.omp.eu). Here, five recent advances are presented. 1) Atmosphere RT. 2) RT in non repetitive topography. 3) Monte Carlo modelling for fast RS image simulation of large landscapes. 4) SIF modelling for vegetation simulated as facets and turbid cells. 5) RS image inversion for mapping the optical properties of urban material and the urban radiative budget.

Details

Language :
English
ISBN :
978-1-72816-374-1
ISBNs :
9781728163741
Database :
NASA Technical Reports
Journal :
IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium
Notes :
970315.02.01.01.65, , EUH 637519, , URBANFLUXES
Publication Type :
Report
Accession number :
edsnas.20210016329
Document Type :
Report
Full Text :
https://doi.org/10.1109/IGARSS39084.2020.9323458