Back to Search Start Over

Observations of Jupiter Family Comet 252P/LINEAR During a Close Approach to Earth Reveal Large Abundances of Methanol and Ethane

Authors :
Paganini, L
Camarca, M. N
Mumma, M. J
Faggi, S
Lippi, M
Villanueva, G. L
Source :
Astronomical Journal. 158(3)
Publication Year :
2019
Publisher :
United States: NASA Center for Aerospace Information (CASI), 2019.

Abstract

We observed short-period comet 252P/LINEAR post-perihelion during its 2016 passage, which presented a favorable opportunity to survey its chemical composition at a close Earth approach (∼0.14 au). We characterized the comet’s chemical composition on four dates (UT 2016 April 12, 19, 26, and 29) using spectroscopic measurements with the Near-infrared Spectrograph (NIRSPEC) at the Keck Observatory on Maunakea, HI. Our high-resolution infrared spectra yielded production rates for four species (H2O, CH3OH, C2H6, and HCN) and upper limits for five species (NH3, H2CO, C2H2, CO, and CH4). We measured water at an average production rate of 4.9 ± 0.1 × 10(exp 27) molec s(exp -1). The chemical properties of 252P suggest a rather typical composition, yet somewhat enriched in methanol and ethane but low in formaldehyde (upper limit) compared to other short-period comets surveyed at infrared wavelengths. Analysis of the ortho/para ratio in water indicates a nuclear spin temperature larger than ∼38 K, consistent with statistical equilibrium (2σ). Spatial distributions of gases, which are representative of possible heterogeneity in the nucleus and/or gas dynamics upon sublimation, showed rather symmetric profiles, with subtle enhancements of the more volatile species C2H6 and HCN toward the sunward hemisphere, while water showed spatial distributions that were extended toward the anti-sunward hemisphere. The continuum was characterized by a narrow distribution. We place our infrared results in the context of observations with the Discovery Channel Telescope, the James Clerk Maxwell submillimeter Telescope, and the Hubble Space Telescope.

Subjects

Subjects :
Astrophysics

Details

Language :
English
ISSN :
15383881 and 00046256
Volume :
158
Issue :
3
Database :
NASA Technical Reports
Journal :
Astronomical Journal
Notes :
80NSSC19M0011, , NNX17AI85G, , NNX17AG93A, , 13-13NAI7-0032
Publication Type :
Report
Accession number :
edsnas.20190030793
Document Type :
Report
Full Text :
https://doi.org/10.3847/1538-3881/ab289c