Back to Search
Start Over
Spiral Structure and Differential Dust Size Distribution in the LkH(alpha) 330 Disk
- Source :
- The Astronomical Journal. 152(6)
- Publication Year :
- 2016
- Publisher :
- United States: NASA Center for Aerospace Information (CASI), 2016.
-
Abstract
- Dust trapping accelerates the coagulation of dust particles, and, thus, it represents an initial step toward the formation of planetesimals. We report H-band (1.6 microns) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkH(alpha) 330. As a result, a pair of spiral arms were detected in the H-band emission, and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (beta) by plotting the observed spectral energy distribution slope between 0.87 mm from our Submillimeter Array observation and1.3 mm from literature. The results imply that grains are indistinguishable from interstellar medium-like dust in the east side (beta = 2.0 +/- 0.5) but are much smaller in the west side beta = 0.7+0.5 -0.4, indicating differential dust size distribution between the two sides of the disk. Combining the results of near-infrared and submillimeter observations, we conjecture that the spiral arms exist at the upper surface and an asymmetric structure resides in the disk interior. Future observations at centimeter wavelengths and differential polarization imaging in other bands (Y-K) with extreme AO imagers are required to understand how large dust grains form and to further explore the dust distribution in the disk.
- Subjects :
- Astrophysics
Subjects
Details
- Language :
- English
- ISSN :
- 15383881 and 00046256
- Volume :
- 152
- Issue :
- 6
- Database :
- NASA Technical Reports
- Journal :
- The Astronomical Journal
- Notes :
- NNG16PX45C
- Publication Type :
- Report
- Accession number :
- edsnas.20170006111
- Document Type :
- Report
- Full Text :
- https://doi.org/10.3847/1538-3881/152/6/222