Back to Search
Start Over
Examining Metasomatism in Low fO2 Environments: Exploring Sulfidation Reactions in Various Planetary Bodies
- Publication Year :
- 2016
- Publisher :
- United States: NASA Center for Aerospace Information (CASI), 2016.
-
Abstract
- Hydrothermal systems are common on Earth in a variety of tectonic environments and at different temperature and pressure conditions. These systems are commonly dominated by H2O, and they are responsible for element transport and the production of ore deposits. Unlike the Earth (fO2~FMQ), many other planetary bodies (e.g., Moon and asteroids) have fO2 environments that are more reduced (IW+/-2), and H2O is not the important solvent responsible for element transport. One example of a texture that could result from element transport and metasomatism, which appears to occur on numerous planetary bodies, is sulfide-silicate intergrowths. These subsolidus assemblages are interpreted to form as a result of sulfidation reactions from a S-rich fluid phase. The composition of fluids may vary within and among parent bodies and could be sourced from magmatic (e.g. Moon) or impact processes (e.g. HED meteorites and Moon). For example, it has been previously demonstrated on the Moon that the interaction of olivine with a hydrogen- and sulfur-bearing vapor phase altered primary mineral assemblages, producing sulfides (e.g. troilite) and orthopyroxene. Formation of these types of "sulfidation" assemblages can be illustrated with the following reaction: Fe2SiO4(ol) + 1/2 S(2 system) = FeS(troi)+ FeSiO3(opx) + 1/2 O2 system. The products of this reaction, as seen in lunar rocks, is a vermicular or "worm-like" texture of intergrown orthopyroxene and troilite. Regardless of the provenance of the S-bearing fluid, the minerals in these various planetary environments reacted in the same manner to produce orthopyroxene and troilite. Although similar textures have been identified in a variety of parent bodies, a comparative study on the compositions and the origins of these sulfide-silicate assemblages has yet to be undertaken. The intent of this study is to examine and compare sulfide-silicate intergrowths from various planetary bodies to explore their petrogenesis and examine the nature of low fO2 (IW+/-2) element migration and sulfidation reactions.
Details
- Language :
- English
- Database :
- NASA Technical Reports
- Publication Type :
- Report
- Accession number :
- edsnas.20160002642
- Document Type :
- Report