Back to Search Start Over

How Do A-train Sensors Intercompare in the Retrieval of Above-cloud Aerosol Optical Depth? A Case Study-based Assessment

Authors :
Jethva, Hiren
Torres, Omar
Waquet, Fabien
Chand, Duli
Hu, Yongxiang
Source :
Geophysical Research Letters. 41(1)
Publication Year :
2014
Publisher :
United States: NASA Center for Aerospace Information (CASI), 2014.

Abstract

We intercompare the above-cloud aerosol optical depth (ACAOD) of biomass burning plumes retrieved from A-train sensors, i.e., Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Polarization and Directionality of Earth Reflectances (POLDER), and Ozone Monitoring Instrument (OMI). These sensors have shown independent capabilities to retrieve aerosol loading above marine boundary layer clouds-a kind of situation often found over the southeast Atlantic Ocean during dry burning season. A systematic comparison reveals that all passive sensors and CALIOP-based research methods derive comparable ACAOD with differences mostly within 0.2 over homogeneous cloud fields. The 532 nm ACAOD retrieved by CALIOP operational algorithm is underestimated. The retrieved 1064 nm AOD however shows closer agreement with passive sensors. Given the different types of measurements processed with different algorithms, the reported close agreement between them is encouraging. Due to unavailability of direct measurements above cloud, the validation of satellite-based ACAOD remains an open challenge. The intersatellite comparison however can be useful for the relative evaluation and consistency check

Subjects

Subjects :
Geosciences (General)

Details

Language :
English
Volume :
41
Issue :
1
Database :
NASA Technical Reports
Journal :
Geophysical Research Letters
Notes :
NNG11HP16A
Publication Type :
Report
Accession number :
edsnas.20140012687
Document Type :
Report
Full Text :
https://doi.org/10.1002/2013GL058405