Back to Search Start Over

Orbital Express Advanced Video Guidance Sensor

Authors :
Howard, Ricky
Heaton, Andy
Pinson, Robin
Carrington, Connie
Publication Year :
2008
Publisher :
United States: NASA Center for Aerospace Information (CASI), 2008.

Abstract

In May 2007 the first US fully autonomous rendezvous and capture was successfully performed by DARPA's Orbital Express (OE) mission. Since then, the Boeing ASTRO spacecraft and the Ball Aerospace NEXTSat have performed multiple rendezvous and docking maneuvers to demonstrate the technologies needed for satellite servicing. MSFC's Advanced Video Guidance Sensor (AVGS) is a primary near-field proximity operations sensor integrated into ASTRO's Autonomous Rendezvous and Capture Sensor System (ARCSS), which provides relative state knowledge to the ASTRO GN&C system. This paper provides an overview of the AVGS sensor flying on Orbital Express, and a summary of the ground testing and on-orbit performance of the AVGS for OE. The AVGS is a laser-based system that is capable of providing range and bearing at midrange distances and full six degree-of-freedom (6DOF) knowledge at near fields. The sensor fires lasers at two different frequencies to illuminate the Long Range Targets (LRTs) and the Short Range Targets (SRTs) on NEXTSat. Subtraction of one image from the other image removes extraneous light sources and reflections from anything other than the corner cubes on the LRTs and SRTs. This feature has played a significant role for Orbital Express in poor lighting conditions. The very bright spots that remain in the subtracted image are processed by the target recognition algorithms and the inverse-perspective algorithms, to provide 3DOF or 6DOF relative state information. Although Orbital Express has configured the ASTRO ARCSS system to only use AVGS at ranges of 120 m or less, some OE scenarios have provided opportunities for AVGS to acquire and track NEXTSat at greater distances. Orbital Express scenarios to date that have utilized AVGS include a berthing operation performed by the ASTRO robotic arm, sensor checkout maneuvers performed by the ASTRO robotic arm, 10-m unmated operations, 30-m unmated operations, and Scenario 3-1 anomaly recovery. The AVGS performed very well during the pre-unmated operations, effectively tracking beyond its 10-degree Pitch and Yaw limit-specifications, and did not require I-LOAD adjustments before unmated operations. AVGS provided excellent performance in the 10-m unmated operations, effectively tracking and maintaining lock for the duration of this scenario, and showing good agreement between the short and long range targets. During the 30-m unmated operations, the AVGS continuously tracked the SRT to 31.6 m, exceeding expectations, and continuously tracked the LRT from 8.8 m out to 31.6 m, with good agreement between these two target solutions. After this scenario was aborted at a 10-m separation during remate operations, the AVGS tracked the LRT out 54.3 m, until the relative attitude between the vehicles was too large. The vehicles remained apart for eight days, at ranges from 1 km to 6 km. During the approach to remate in this recovery operation, the AVGS began tracking the LRT at 150 m, well beyond the OE planned limits for AVGS ranges, and functioned as the primary sensor for the autonomous rendezvous and docking.

Details

Language :
English
Database :
NASA Technical Reports
Publication Type :
Report
Accession number :
edsnas.20090001151
Document Type :
Report