Back to Search Start Over

A New Titanium-Bearing Calcium Aluminosilicate Phase

Authors :
Paque, Julie M
Beckett, John R
Barber, David J
Stolper, Edward M
Publication Year :
1994
Publisher :
United States: NASA Center for Aerospace Information (CASI), 1994.

Abstract

A new titanium-bearing calcium aluminosilicate mineral has been identified in coarse-grained calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites. The formula for this phase, which we have temporarily termed "UNK," is Ca3Ti(AlTi)2(Si,Al)3O14, and it is present in at least 8 of the 20 coarse-grained CAIs from the Allende CV3 chondrite examined as part of this project. The phase occurs in Types A and B1 inclusions as small tabular crystals oriented along two mutually perpendicular planes in melilite. UNK crystallizes from melts in dynamic crystallization experiments conducted in air from four bulk compositions modeled after Types A, B1, B2 and C inclusions. Cooling rates resulting in crystallization of UNK ranged from 0.5 to 200 C/h from maximum (initial) temperatures of 1375 to 1580 C. Only below 1190 C does UNK itself begin to crystallize. To first order, the presence or absence of UNK from individual experiments can be understood in terms of the compositions of residual melts and nucleation probabilities. Compositions of synthetic and meteoritic LINK are very similar in terms of major oxides, differing only in the small amounts of trivalent Ti (7-13% of total Ti) in meteoritic samples. UNK crystallized from the Type A analog is similar texturally to that found in CAls, although glass, which is typically associated with synthetic UN& is not observed in meteoritic occurrences. A low Ti end-member of UNK ("Si-UNK") with a composition new that of Ca3Al2Si4O14 was produced in a few samples from the Type B1 analog. This phase has not been found in the meteoritic inclusions.

Subjects

Subjects :
Astrophysics

Details

Language :
English
Database :
NASA Technical Reports
Notes :
NAG9-105, , NCC2-758, , NAGW-3533, , NERC-GR3/5349, , Caltech-Contrib-5137
Publication Type :
Report
Accession number :
edsnas.20010064689
Document Type :
Report