Back to Search Start Over

Classification of asteroid spectra using a neural network

Authors :
Howell, E. S
Merenyi, E
Lebofsky, L. A
Source :
Journal of Geophysical Research. 99(E5)
Publication Year :
1994
Publisher :
United States: NASA Center for Aerospace Information (CASI), 1994.

Abstract

The 52-color asteroid survey (Bell et al., 1988) together with the 8-color asteroid survey (Zellner et al., 1985) provide a data set of asteroid spectra spanning 0.3-2.5 micrometers. An artificial neural network clusters these asteroid spectra based on their similarity to each other. We have also trained the neural network with a categorization learning output layer in a supervised mode to associate the established clusters with taxonomic classes. Results of our classification agree with Tholen's classification based on the 8-color data alone. When extending the spectral range using the 52-color survey data, we find that some modification of the Tholen classes is indicated to produce a cleaner, self-consistent set of taxonomic classes. After supervised training using our modified classes, the network correctly classifies both the training examples, and additional spectra into the correct class with an average of 90% accuracy. Our classification supports the separation of the K class from the S class, as suggested by Bell et al. (1987), based on the near-infrared spectrum. We define two end-member subclasses which seem to have compositional significance within the S class: the So class, which is olivine-rich and red, and the Sp class, which is pyroxene-rich and less red. The remaining S-class asteroids have intermediate compositions of both olivine and pyroxene and moderately red continua. The network clustering suggests some additional structure within the E-, M-, and P-class asteroids, even in the absence of albedo information, which is the only discriminant between these in the Tholen classification. New relationships are seen between the C class and related G, B, and F classes. However, in both cases, the number of spectra is too small to interpret or determine the significance of these separations.

Subjects

Subjects :
Astronomy

Details

Language :
English
ISSN :
01480227
Volume :
99
Issue :
E5
Database :
NASA Technical Reports
Journal :
Journal of Geophysical Research
Notes :
NAGW-1146, , NAGW-1975
Publication Type :
Report
Accession number :
edsnas.19950028408
Document Type :
Report
Full Text :
https://doi.org/10.1029/93JE03575