Back to Search
Start Over
Reconnection of vorticity lines and magnetic lines
- Source :
- Physics of Fluids B. 5(7 pt)
- Publication Year :
- 1993
- Publisher :
- United States: NASA Center for Aerospace Information (CASI), 1993.
-
Abstract
- Magnetic field and fluid vorticity share many features. First, as divergence-free vector fields they are conveniently visualized in terms of their field lines, curves that are everywhere tangent to the field. The lines indicate direction and their density indicates field strength. The question arises of the extent to which the evolution of the fields can be treated in terms of the evolution of their field lines. Newcomb (1958) derived the general conditions on the evolution of vector fields that permit the identification of field lines from one instant to the next. The equations of evolution of the vorticity field and the magnetic field fall within Newcomb's analysis. The dynamics of the flows differ between these two systems, so that geometrically similar phenomena happen in different ways in the two systems. In this paper the geometrical similarities are emphasized. Reconnection will be defined here as evolution in which it is not possible to preserve the global identification of some field lines. There is a close relation between reconnection and the topology of the vector field lines. Nontrivial topology occurs where the field has null points or there are field lines that are closed loops.
- Subjects :
- Plasma Physics
Subjects
Details
- Language :
- English
- ISSN :
- 08998221
- Volume :
- 5
- Issue :
- 7 pt
- Database :
- NASA Technical Reports
- Journal :
- Physics of Fluids B
- Notes :
- NASW-4651
- Publication Type :
- Report
- Accession number :
- edsnas.19930065146
- Document Type :
- Report
- Full Text :
- https://doi.org/10.1063/1.860718