Back to Search
Start Over
The tilt effect for Saturn's rings
- Source :
- Icarus. 31
- Publication Year :
- 1977
- Publisher :
- United States: NASA Center for Aerospace Information (CASI), 1977.
-
Abstract
- Multiple-scattering computations are carried out to explain the variation of the observed brightness of the A and B rings of Saturn with declination of the earth and sun. These computations are performed by a doubling scheme for a homogeneous plane-parallel scattering medium. A range of choices is tested for the phase function, albedo for single scattering, and optical depth of both the rings. Isotropic scattering and several other simple phase functions are ruled out, and it is found that the phase function must be moderately peaked in both the forward and backward directions. The tilt effect can be explained by multiple scattering in a homogeneous layer, but, for ring B, this requires a single-scattering albedo in excess of 0.8. The brightest part of ring B must have an optical depth greater than 0.9. It is found that the tilt effect for ring A can be reproduced by particles having the same properties as those in ring B with the optical depth for the A ring in the range 0.4 to 0.6.
- Subjects :
- Lunar And Planetary Exploration
Subjects
Details
- Language :
- English
- Volume :
- 31
- Database :
- NASA Technical Reports
- Journal :
- Icarus
- Notes :
- NGL-22-010-023
- Publication Type :
- Report
- Accession number :
- edsnas.19770052660
- Document Type :
- Report
- Full Text :
- https://doi.org/10.1016/0019-1035(77)90078-1