Back to Search
Start Over
The Einstein and the Navier-Stokes Equations: Connecting the Two
- Source :
- Bredberg, Irene. 2012. The Einstein and the Navier-Stokes Equations: Connecting the Two. Doctoral dissertation, Harvard University.
- Publication Year :
- 2013
-
Abstract
- This thesis establishes a precise mathematical connection between the Einstein equations of general relativity and the incompressible Navier-Stokes equation of fluid dynamics. We carry out a holographic analysis which relates solutions to the Einstein equations to the behaviour of a dual fluid living in one fewer dimensions. Gravitational systems are found to exhibit Navier-Stokes behaviour when we study the dynamics of the region near an event horizon. Thus, we find non-linear deformations of Einstein solutions which, after taking a suitable near horizon limit and imposing our particular choice of boundary conditions, turn out to be precisely characterised by solutions to the incompressible Navier-Stokes equation. In other words, for any solution to the Navier-Stokes equation, the set-up we present provides a solution to the Einstein equations near a horizon. We consider the cases of fluids flowing on the plane and on the sphere. Fluid dynamics on the plane is analysed foremost in the context of a flat background geometry whilst the spherical analysis is undertaken for Schwarzschild black holes and the static patch of four-dimensional de Sitter space.<br />Physics
- Subjects :
- theoretical physics
physics
black holes
fluid dynamics
general relativity
holography
Subjects
Details
- Language :
- English
- Database :
- Digital Access to Scholarship at Harvard (DASH)
- Journal :
- Bredberg, Irene. 2012. The Einstein and the Navier-Stokes Equations: Connecting the Two. Doctoral dissertation, Harvard University.
- Publication Type :
- Dissertation/ Thesis
- Accession number :
- edshld.1.10330319
- Document Type :
- Thesis or Dissertation