Back to Search
Start Over
Exact solution of the non-Hermitian eigenvalue problem for electron orbital excitations in a hydrogen atom
- Source :
- Canadian Journal of Physics. May, 2021, Vol. 99 Issue 5, p387, 3 p.
- Publication Year :
- 2021
-
Abstract
- A new way of solving the spectral problem to describe electronic excitations is demonstrated for a hydrogen atom. The applied methodology is based formally on the idea of electronic excitation description without introducing boundary conditions to the eigenvalue problem for the square of the angular momentum operator. The eigenvalues of such an operator are considered as complex in general. As a result, the spectral problem for the Schrodinger equation becomes non-Hermitian with complex energy values. The imaginary part of the total energy helps to estimate the excitation lifetime within a unified scheme. The existence of the Stark shift of atomic energy levels and the collapse of the atomic spectra are confirmed. Key words: electronic structure, excited state properties, lifetime, total energy, hydrogen. Nous demontrons pour l'atome d'hydrogene une nouvelle facon de resoudre le probleme spectral dans la description des etats excites. La methodologie utilisee est basee sur l'idee de la description des excitations electroniques sans introduction de conditions limites au probleme de valeur propre pour le carre de l'operateur du carre du moment angulaire. Les valeurs propres de tels operateurs sont tenues comme complexes en general. Il en resulte que le probleme spectral pour l'equation de Schrodinger devient non-hermitien avec des energies complexes. La partie imaginaire de l'energie totale aide a estimer le temps de vie de l'excitation dans un schema unifie. Nous confirmons ainsi l'existence d'un decalage de Stark des niveaux d'energie et l'aplatissement des spectres atomiques. [Traduit par la Redaction] Mots-cles : structure electronique, proprietes des etats excites, temps de vie, energie totale, hydrogene.<br />1. Introduction The Schrodinger equation is a key subject in quantum mechanics [1]. It describes many problems in different branches of science. There are many ways to solve the Schrodinger [...]
Details
- Language :
- English
- ISSN :
- 00084204
- Volume :
- 99
- Issue :
- 5
- Database :
- Gale General OneFile
- Journal :
- Canadian Journal of Physics
- Publication Type :
- Academic Journal
- Accession number :
- edsgcl.661839717
- Full Text :
- https://doi.org/10.1139/cjp-2020-0222