Back to Search Start Over

Interacting multi-channel topological boundary modes in a quantum Hall valley system

Authors :
Randeria, Mallika T.
Agarwal, Kartiek
Feldman, Benjamin E.
Ding, Hao
Ji, Huiwen
Cava, R. J.
Sondhi, S. L.
Source :
Nature. February 2019, Vol. 566 Issue 7744, p363, 5 p.
Publication Year :
2019

Abstract

Author(s): Mallika T. Randeria [sup.1] , Kartiek Agarwal [sup.2] , Benjamin E. Feldman [sup.1] [sup.5] [sup.6] , Hao Ding [sup.1] , Huiwen Ji [sup.3] , R. J. Cava [sup.3] , [...]<br />Symmetry and topology are central to understanding quantum Hall ferromagnets (QHFMs), two-dimensional electronic phases with spontaneously broken spin or pseudospin symmetry whose wavefunctions also have topological properties.sup.1,2. Domain walls between distinct broken-symmetry QHFM phases are predicted to host gapless one-dimensional modes--that is, quantum channels that emerge because of a topological change in the underlying electronic wavefunctions at such interfaces. Although various QHFMs have been identified in different materials.sup.3-8, interacting electronic modes at these domain walls have not been probed. Here we use a scanning tunnelling microscope to directly visualize the spontaneous formation of boundary modes at domain walls between QHFM phases with different valley polarization (that is, the occupation of equal-energy but quantum mechanically distinct valleys in the electronic structure) on the surface of bismuth. Spectroscopy shows that these modes occur within a topological energy gap, which closes and reopens as the valley polarization switches across the domain wall. By changing the valley flavour and the number of modes at the domain wall, we can realize different regimes in which the valley-polarized channels are either metallic or develop a spectroscopic gap. This behaviour is a consequence of Coulomb interactions constrained by the valley flavour, which determines whether electrons in the topological modes can backscatter, making these channels a unique class of interacting one-dimensional quantum wires. QHFM domain walls can be realized in different classes of two-dimensional materials, providing the opportunity to explore a rich phase space of interactions in these quantum wires. Scanning tunnelling microscopy shows that 1D channels between quantum Hall states with different valley polarization are metallic or insulating depending on constraints imposed on electron-electron interaction by valley flavour.

Details

Language :
English
ISSN :
00280836
Volume :
566
Issue :
7744
Database :
Gale General OneFile
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
edsgcl.575056225
Full Text :
https://doi.org/10.1038/s41586-019-0913-0