Back to Search
Start Over
An improved two-rotor function for conformational potential energy surfaces of 20 amino acid diamides
- Source :
- Canadian Journal of Chemistry. January, 2018, Vol. 96 Issue 1, p58, 14 p.
- Publication Year :
- 2018
-
Abstract
- Predicting the three-dimensional structure of a protein from its amino acid sequence requires a complete understanding of the molecular forces that influences the protein folding process. Each possible conformation has its corresponding potential energy, which characterizes its thermodynamic stability. This is needed to identify the primary intra- and intermolecular interactions, so that we can reduce the dimensionality of the problem, and create a relatively simple representation of the system. Investigating this problem using quantum chemical methods produces accurate results; however, this also entails large computational resources. In this study, an improved two-rotor potential energy function is proposed to represent the backbone interactions in amino acids through a linear combination of a Fourier series and a mixture of Gaussian functions. This function is applied to approximate the 20 amino acid diamide Ramachandran-type PESs, and results yielded an average RMSE of 2.36 kJ [mol.sup.-1], which suggest that the mathematical model precisely captures the general topology of the conformational potential energy surface. Furthermore, this paper provides insights on the conformational preferences of amino acid diamides through local minima geometries and energy ranges, using the improved mathematical model. The proposed mathematical model presents a simpler representation that attempts to provide a framework on building polypeptide models from individual amino acid functions, and consequently, a novel method for rapid but accurate evaluation of potential energies for biomolecular simulations. Key words: potential energy surface, conformational analysis, mathematical modeling. La prediction de la structure tridimensionnelle d'une proteine a partir de sa sequence d'acides amines requiert une parfaite comprehension des forces moleculaires qui influencent le processus de repliement des proteines. Chacune des conformations possibles possede sa propre energie potentielle, laquelle caracterise sa stabilite thermodynamique. Ces connaissances sont necessaires pour la determination des interactions primaires intra et intermoleculaires, de maniere a pouvoir reduire la dimensionnalite du probleme et creer une representation relativement simple du systeme. L'etude de ce probleme a l'aide de methodes de chimie quantique, bien que produisant des resultats exacts, necessite aussi des ressources informatiques considerables. Dans le cadre de la presente etude, nous proposons une fonction d'energie potentielle a deux rotors pour representer les interactions du squelette d'acides amines, par une combinaison lineaire d'une serie de Fourrier et d'un amalgame de fonctions gaussiennes. Nous avons applique cette fonction a l'approximation des surfaces d'energie potentielle (SEP) de type Ramachandran des 20 acides amines d'un diamide. Les resultats ont produit un ecart moyen quadratique de 2,38 kJ*[mol.sup.-1], ce qui laisse supposer que ce modele mathematique represente bien la topologie generale de sa surface d'energie potentielle conformationnelle. De plus, cet article fournit des informations sur les conformations preferentielles de diamides d'acides amines grace a la geometrie des minima locaux et aux intervalles energetiques obtenus au moyen de ce modele mathematique ameliore. Le modele mathematique que nous pro-posons offre une representation simplifiee en vue d'etablir un cadre pour la construction de modeles de polypeptides a partir des fonctions des acides amines qui le composent et, par consequent, constitue une nouvelle methode pour l'evaluation rapide et exacte des energies potentielles aux fins de modelisation de biomolecules. [Traduit par la Redaction] Mots-cles : surface d'energie potentielle, analyse conformationnelle, modelisation mathematique.<br />Introduction Proteins, which are assembled from 20 amino acids, are machines and building blocks of living cells. The macromolecules are vital for structure, function, and regulation of various biological processes. [...]
- Subjects :
- Chemical reactions -- Observations
Amides -- Chemical properties
Chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 00084042
- Volume :
- 96
- Issue :
- 1
- Database :
- Gale General OneFile
- Journal :
- Canadian Journal of Chemistry
- Publication Type :
- Academic Journal
- Accession number :
- edsgcl.523104838
- Full Text :
- https://doi.org/10.1139/cjc-2017-0571