Back to Search Start Over

Dynamical behavior of the Richtmyer-Meshkov instability-induced turbulent mixing under multiple shock interactions

Authors :
Wang, Tao
Tao, Gang
Bai, Jingsong
Li, Ping
Wang, Bing
Du, Lei
Xiao, Jiaxin
Source :
Canadian Journal of Physics. August, 2017, Vol. 95 Issue 8, p671, 11 p.
Publication Year :
2017

Abstract

The dynamical behavior of Richtmyer-Meshkov instability-induced turbulent mixing under multiple shock interactions is investigated by large-eddy simulation. After the initial shockwave-interface interaction, the transmitted wave reverberates between the accelerated interface and the end-wall of the shock tube to form a process of multiple shock interactions. The turbulent mixing zone grows in a different manner under each of the impingements. After the initial shock, it grows as a power law of time. After the reshock and the impingement of the reflected rarefaction wave, it grows with time as a different negative exponential law. When the impingement of the reflected compression wave completes, it grows approximately in a linear fashion. The statistical quantities in the turbulent mixing zone evolve with time in a similar way under multiple impingements, and after the impingement of the reflected compression wave, they all decay asymptotically. Therefore, the turbulent mixing zone behaves in a statistically self-similar pattern. Even though the impingements of different waves result in different abrupt changes of the characteristic scale parameters of mixing turbulence, as a whole, the characteristic scales present a feature of growth, and the characteristic-scale Reynolds numbers present a feature of decay. The mixing flow is continuously anisotropic, yet the anisotropy weakens gradually. Therefore the development of turbulent mixing presents a trend of isotropy. Key words: Richtmyer-Meshkov instability, turbulent mixing, multiple shock, large-eddy simulation, statistical self-similarity. Dans une simulation de grands tourbillons, nous etudions le comportement dynamique du melange turbulent de Richtmyers-Meshkov induit par instabilites sous des chocs multiples. Apres l'interaction initiale entre l'onde de choc et l'interface, l'onde transmise reverbere entre l'interface acceleree et le mur du fond du tube de choc, pour generer un mecanisme a chocs multiples. La zone de melange croit de facon differente sous chaque impact. Apres le premier choc, elle croit comme une loi de puissance du temps. Apres le retour et l'impact de l'onde de rarefaction, elle croit dans le temps avec une loi exponentielle negative differente. Lorsque l'impact de l'onde de compression reflechie complete son mouvement, la zone a une croissance approximativement lineaire avec le temps. Les quantites statistiques dans la zone de melange turbulent evoluent dans le temps de facon similaire et apres l'impact de l'onde de compression reflechie, elles decroissent asymptotiquement. Par consequent, la zone de turbulence se comporte statistiquement selon un patron d'autosimilarite. Meme si les impacts des differentes ondes generent des variations differentes abruptes des parametres d'echelle caracteristique de la turbulence, dans leur ensemble, les echelles caracteristiques presentent une croissance, alors que l'echelle caracteristique du nombre de Reynolds presente une decroissance. Le flot de melange est continuellement anisotrope, mais l'anisotropie diminue graduellement. Par consequent, le developpement de la zone de melange turbulent tend vers l'isotropie. [Traduit par la Redaction] Mots-cles: instabilite de Richtmyers-Meshkov, melange turbulent, chocs multiples, simulation de grands tourbillons, autosimilarite statistique.<br />1. Introduction As a shock wave passes through a perturbed interface between two different fluids, the baroclinic vorticity is deposited at the interface due to the misalignment of the pressure [...]

Details

Language :
English
ISSN :
00084204
Volume :
95
Issue :
8
Database :
Gale General OneFile
Journal :
Canadian Journal of Physics
Publication Type :
Academic Journal
Accession number :
edsgcl.502000560
Full Text :
https://doi.org/10.1139/cjp-2016-0633