Back to Search
Start Over
PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection
- Source :
- Nature. March 24, 2016, p528, 17 p.
- Publication Year :
- 2016
-
Abstract
- The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischaemia. Acute kidney injury (AKI) affects 3% of all hospitalized patients (1,2). Here we show that the mitochondrial biogenesis regulator, PGC1α (3,4), is a pivotal determinant of renal recovery from injury by regulating nicotinamide adenine dinucleotide (NAD) biosynthesis. Following renal ischaemia, Pgc1[α.sup.-/-] (also known as [Ppargc1a.sup.-/-]) mice develop local deficiency of the NAD precursor niacinamide (NAM, also known as nicotinamide), marked fat accumulation, and failure to reestablish normal function. Notably, exogenous NAM improves local NAD levels, fat accumulation, and renal function in post-ischaemic Pgc1[α.sup.-1-] mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulate the effects of NAM supplementation, including more local NAD and less fat accumulation with better renal function after ischaemia. PGC1α coordinately upregulates the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuates the de novo pathway. NAM enhances NAD via the enzyme NAMPT and augments production of the fat breakdown product β-hydroxybutyrate, leading to increased production of prostaglandin PGE2 (ref. 5), a secreted autacoid that maintains renal function. NAM treatment reverses established ischaemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-hydroxybutyrate signalling or prostaglandin production similarly abolishes PGC1α-dependent renoprotection. Given the importance of mitochondrial health in ageing and the function of metabolically active organs, the results implicate NAM and NAD as key effectors for achieving PGC1α-dependent stress resistance.<br />The mature renal tubule returns ~140 l per day of filtered plasma water back to the circulation by establishing energy-intensive electrochemical gradients between the filtrate and vasculature. The kidney is [...]
- Subjects :
- Metabolism -- Health aspects
Biosynthesis -- Physiological aspects -- Health aspects
NAD (Coenzyme) -- Health aspects
Acute renal failure -- Prevention
Oxidative stress -- Complications and side effects
Transcription factors -- Health aspects
Environmental issues
Science and technology
Zoology and wildlife conservation
Subjects
Details
- Language :
- English
- ISSN :
- 00280836
- Database :
- Gale General OneFile
- Journal :
- Nature
- Publication Type :
- Academic Journal
- Accession number :
- edsgcl.447638111