Back to Search Start Over

Inhibitory action of Wnt target gene osteopontin on mitochondrial cytochrome c release determines renal ischemic resistance

Authors :
Vinas, Jose Luis
Sola, Anna
Jung, Michaela
Mastora, Chrysoula
Vinuesa, Eugenia
Pi, Felip
Hotter, Georgina
Source :
The American Journal of Physiology. July, 2010, Vol. 299 Issue 1, pF234, 9 p.
Publication Year :
2010

Abstract

Certain determinants of ischemic resistance in the Brown Norway rat strain have been proposed, but no studies to date have focused on the role of the Wnt pathway in the ischemic resistance mechanism. We performed a comparative genomic study in Brown Norway vs. Sprague-Dawley rats. Selective manipulations of the Wnt pathway in vivo and in vitro allowed us to study whether the action of the Wnt pathway on apoptosis through the regulation of osteopontin was critical to the maintenance of inherent ischemic resistance mechanisms. The results revealed a major gene upregulation of the Wnt family in Brown Norway rats after renal ischemia-reperfusion. Manipulation of the Wnt signaling cascade by selective antibodies increased mitochondrial cytochrome c release and caspase 3 activity. The antiapoptotic role of Wnt was mediated by osteopontin, a direct Wnt target gene. Osteopontin was reduced by Wnt antibody administration in vivo, and osteopontin gene silencing in vitro significantly increased mitochondrial cytochrome c release. The overexpression of Wnt pathway genes detected in Brown Norway rats is critical in the maintenance of their inherent ischemic resistance. Activation of the Wnt signaling cascade reduces mitochondrial cytochrome c release and caspase 3 activity through the action of osteopontin. apoptosis; acute renal failure doi: 10.1152/ajprenal.00687.2009.

Details

Language :
English
ISSN :
00029513
Volume :
299
Issue :
1
Database :
Gale General OneFile
Journal :
The American Journal of Physiology
Publication Type :
Academic Journal
Accession number :
edsgcl.232382366