Back to Search Start Over

Effective placement of dangerous goods cars in rail yard marshaling operation

Authors :
Bagheri, Morteza
Saccomanno, F. Frank
Fu, Liping
Source :
Canadian Journal of Civil Engineering. May, 2010, Vol. 37 Issue 5, p753, 10 p.
Publication Year :
2010

Abstract

Train derailments are important safety issues, and they become even more critical when dangerous goods (DG) are involved. This paper is concerned with mitigating derailment risk through improved operational strategies, with a specific focus on DG marshalling practices in the train-assembly process. A new modelling framework is proposed to investigate how the position of DG railway cars affects their chances of being involved in a derailment as the train travels over a given track segment. The underlying research problem can be formulated as a linear integer programming technique. However, since solving this formulation is computationally intractable, a heuristic method has been developed based on a genetic algorithm that gives a near-optimum solution. The proposed model is applied to a hypothetical rail corridor to demonstrate how effective marshalling of DG along a train can reduce overall derailment risks. Key wards: rail transportation, derailment, dangerous goods, risk, rail yard, marshalling. Les derailments de train representenl une importanie question de seeurile, plus parliculieremenl lorsque des matieres dangereuses sont impliquees. Le present article traite de 1'attenuation du risque de deraillement par 1'amelioration des strategies operationnelles, plus specifiquement sur le positionnemem des wagons de matieres dangereuses durant le classement des wagons. Un nouveau cadre de modelisation est propose pour examiner la maniere dont la position des wagons de matieres dangereuses affecte leur chance d'etre impliques dans un deraillement lorsque le train roule sur un segment de voie ferree donne. Le probleme sous-jacent peut etre formule comme une technique de programmation lineaire par nombres entiers. Toutefois, etant donne que la resolution de cette formulation est difficilement calculable, une methode heuristique a ete developpee en se basant sur un algorithme genetique qui offre une solution pres de 1'optimal. Le modele propose est applique a un corridor hypothetique de voie ferree afin de demontrer comment un classement efficace des matieres dangereuses le long d'un train peut reduire les risques lors d'un deraillement. Mots-cles : transport ferroviaire, deraillement, matieres dangereuses, risque, cour de triage, classement des wagons.<br />Dangerous goods derailment risks Rail accidents can be classified into three main types: derailments, collisions (including head on, rear end, and side), and highway railway grade crossing accidents. As illustrated [...]

Details

Language :
English
ISSN :
03151468
Volume :
37
Issue :
5
Database :
Gale General OneFile
Journal :
Canadian Journal of Civil Engineering
Publication Type :
Academic Journal
Accession number :
edsgcl.230063754
Full Text :
https://doi.org/10.1139/L10-015