Back to Search Start Over

Surface-based polarimetric C-band microwave scatterometer measurements of snow during a Chinook event

Authors :
Fuller, Mark Christopher
Geldsetzer, Torsten
Yackel, John J.
Source :
IEEE Transactions on Geoscience and Remote Sensing. June, 2009, Vol. 47 Issue 6, p1766, 11 p.
Publication Year :
2009

Abstract

This paper presents a case study of C-band backscatter observations of snow during a Chinook event. A surface-based C-band polarimetric data set collected in February 2006 is used to contrast the polarimetric response to sampled conditions of bare frozen ground, cold snow-covered ground, and snow during a Chinook event. Chinook activity is inherently spatially and temporally variable across the region in winter and produces considerable spatial variability of snow-cover physical properties associated with snow--water-equivalent (SWE) estimates. A temporal analysis of polarimetric backscatter sensed during a Chinook-induced ablation event on February 27, 2006 is used to describe the associated changes in snow conditions and scattering mechanisms. Analysis reveals that the polarimetric surface-based C-band scatterometer data respond to changes in snow parameters associated with the specific ground and snow conditions and to the temporal Chinook ablation event. Use of the copolarizations, cross-polarization, depolarization ratio, copolarization ratio, complex copolarization correlation coefficient, and the copolarized phase difference information show promise in describing changes in snow physical parameters, differing ground and snow conditions, and transitional ablation events, based on differing scattering mechanisms. This paper infers that an increase in volume scattering and fluctuations in surface scattering during the Chinook ablation event may be associated with specific physical changes such as density, crystal structure, and permittivity caused by wind speed. This paper has implications for remotely sensed estimations of snow-covered area (SCA) and SWE. Association of SCA and SWE with backscatter coefficients is not explicit in this paper; however, changes in SWE and snow properties are inferentially linked to changes in backscatter. Index Terms--Chinook, radar polarimetry, radar scattering, snow ablation, snow-covered area (SCA), snow--water equivalent (SWE).

Details

Language :
English
ISSN :
01962892
Volume :
47
Issue :
6
Database :
Gale General OneFile
Journal :
IEEE Transactions on Geoscience and Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsgcl.201209212