Back to Search Start Over

Repeated ethanol exposure during late gestation alters the maturation and innate immune status of the ovine fetal lung

Authors :
Sozo, Foula
O'Day, Luke
Maritz, Gert
Kenna, Kelly
Stacy, Victoria
Brew, Nadine
Walker, David
Bocking, Alan
Brien, James
Harding, Richard
Source :
The American Journal of Physiology. March, 2009, Vol. 296 Issue 3, pL510, 9 p.
Publication Year :
2009

Abstract

Little is known about the effects of fetal ethanol exposure on lung development. Our aim was to determine the effects of repeated ethanol exposure during late gestation on fetal lung growth, maturation, and inflammatory status. Pregnant ewes were chronically catheterized at 91 days of gestational age (DGA; term ~147 days). From 95-133 DGA, ewes were given a 1-h daily infusion of either 0.75 g ethanol/kg (n = 9) or saline (n = 8), with tissue collection at 134 DGA. Fetal lungs were examined for changes in tissue growth, structure, maturation, inflammation, and oxidative stress. Between treatment groups, there were no differences in lung weight, DNA and protein contents, percent proliferating and apoptotic cells, tissue and air-space fractions, alveolar number and mean linear intercept, septal thickness, type-II cell number and elastin content. Ethanol exposure caused a 75% increase in pulmonary collagen I [alpha]1 mRNA levels (P < 0.05) and a significant increase in collagen deposition. Surfactant protein (SP)-A and SP-B mRNA levels were approximately one third of control levels following ethanol exposure (P < 0.05). The mRNA levels of the proinflammatory cytokines interleukin (IL)-1[beta] and IL-8 were also lower (P < 0.05) in ethanol-exposed fetuses compared with controls. Pulmonary malondialdehyde levels tended to be increased (P = 0.07) in ethanol-exposed fetuses. Daily exposure of the fetus to ethanol during the last third of gestation alters extracellular matrix deposition and surfactant protein gene expression, which could increase the risk of respiratory distress syndrome after birth. Changes to the innate immune status of the fetus could increase the susceptibility of the neonatal lungs to infection. lung growth; lung morphometry; surfactant proteins; proinflammatory cytokines

Details

Language :
English
ISSN :
00029513
Volume :
296
Issue :
3
Database :
Gale General OneFile
Journal :
The American Journal of Physiology
Publication Type :
Academic Journal
Accession number :
edsgcl.195981638