Back to Search Start Over

A solid-state light-matter interface at the single-photon level

Authors :
de Riedmatten, Hugues
Afzelius, Mikael
Staudt, Matthias U.
Simon, Christoph
Gisin, Nicolas
Source :
Nature. December 11, 2008, Vol. 456 Issue 7223, p773, 5 p.
Publication Year :
2008

Abstract

Coherent and reversible mapping of quantum information between light and matter is an important experimental challenge in quantum information science. In particular, it is an essential requirement for the implementation of quantum networks and quantum repeaters (1-3). So far, quantum interfaces between light and atoms have been demonstrated with atomic gases (4-9), and with single trapped atoms in cavities (10). Here we demonstrate the coherent and reversible mapping of a light field with less than one photon per pulse onto an ensemble of ~10 (7) atoms naturally trapped in a solid. This is achieved by coherently absorbing the light field in a suitably prepared solid-state atomic medium'. The state of the light is mapped onto collective atomic excitations at an optical transition and stored for a pre-determined time of up to 1 Its before being released in a well-defined spatio-temporal mode as a result of a collective interference. The coherence of the process is verified by performing an interference experiment with two stored weak pulses with a variable phase relation. Visibilities of more than 95 per cent are obtained, demonstrating the high coherence of the mapping process at the single-photon level. In addition, we show experimentally that our interface makes it possible to store and retrieve light fields in multiple temporal modes. Our results open the way to multimode solid-state quantum memories as a promising alternative to atomic gases.<br />Efficient and reversible mapping of quantum states between light and matter requires strong atom-photon interaction. This can be achieved using ensembles of atoms, where light can be efficiently absorbed and [...]

Details

Language :
English
ISSN :
00280836
Volume :
456
Issue :
7223
Database :
Gale General OneFile
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
edsgcl.192061197