Back to Search Start Over

Neural control of the anorexia-cachexia syndrome

Authors :
Laviano, Alessandro
Inui, Akio
Marks, Daniel L.
Meguid, Michael M.
Piehard, Claude
Fanelli, Filippo Rossi
Seelaender, Marilia
Source :
The American Journal of Physiology. Nov, 2008, Vol. 295 Issue 5, pE1000, 9 p.
Publication Year :
2008

Abstract

The anorexia-cachexia syndrome is a debilitating clinical condition characterizing the course of chronic diseases, which heavily impacts on patients' morbidity and quality of life, ultimately accelerating death. The pathogenesis is multifactorial and reflects the complexity and redundancy of the mechanisms controlling energy homeostasis under physiological conditions. Accumulating evidence indicates that, during disease, disturbances of the hypothalamic pathways controlling energy homeostasis occur, leading to profound metabolic changes in peripheral tissues. In particular, the hypothalamic melanocortin system does not respond appropriately to peripheral inputs, and its activity is diverted largely toward the promotion of catabolic stimuli (i.e., reduced energy intake, increased energy expenditure, possibly increased muscle proteolysis, and adipose tissue loss). Hypothalamic proinflammatory cytokines and serotonin, among other factors, are key in triggering hypothalamic resistance. These catabolic effects represent the central response to peripheral challenges (i.e., growing tumor, renal, cardiac failure, disrupted hepatic metabolism) that are likely sensed by the brain through the vagus nerve. Also, disease-induced changes in fatty acid oxidation within hypothalamic neurons may contribute to the dysfunction of the hypothalamic melanocortin system. Ultimately, sympathetic outflow mediates, at least in part, the metabolic changes in peripheral tissues. Other factors are likely involved in the pathogenesis of the anorexia-cachexia syndrome, and their role is currently being elucidated. However, available evidence shows that the constellation of symptoms characterizing this syndrome should be considered, at least in part, as different phenotypes of common neurochemical/metabolic alterations in the presence of a chronic inflammatory state. melanocortin; cytokines; serotonin; malonyl-coenzyme A; vagus nerve; sympathetic output

Details

Language :
English
ISSN :
00029513
Volume :
295
Issue :
5
Database :
Gale General OneFile
Journal :
The American Journal of Physiology
Publication Type :
Academic Journal
Accession number :
edsgcl.189795848