Back to Search Start Over

Median radial basis function neural network

Authors :
Bors, Adrian G.
Pitas, I.
Source :
IEEE Transactions on Neural Networks. Nov, 1996, Vol. 7 Issue 6, p1351, 14 p.
Publication Year :
1996

Abstract

Radial basis functions (RBF's) consist of a two-layer neural network, where each hidden unit implements a kernel function. Each kernel is associated with an activation region from the input space and its output is fed to an output unit. In order to find the parameters of a neural network which embeds this structure we take into consideration two different statistical approaches. The first approach uses classical estimation in the learning stage and it is based on the learning vector quantization algorithm and its second-order statistics extension. After the presentation of this approach, we introduce the median radial basis function (MRBF) algorithm based on robust estimation of the hidden unit parameters. The proposed algorithm employs the marginal median for kernel location estimation and the median of the absolute deviations for the scale parameter estimation. A histogram-based fast implementation is provided for the MRBF algorithm. The theoretical performance of the two training algorithms is comparatively evaluated when estimating the network weights. The network is applied in pattern classification problems and in optical flow segmentation.

Details

ISSN :
10459227
Volume :
7
Issue :
6
Database :
Gale General OneFile
Journal :
IEEE Transactions on Neural Networks
Publication Type :
Academic Journal
Accession number :
edsgcl.18966053