Back to Search Start Over

Optimal wavelet transform for the detection of microaneurysms in retina photographs

Authors :
Quellec, Gwenole
Lamard, Mathieu
Josselin, Pierre Marie
Cazuguel, Guy
Cochener, Beatrice
Roux, Christian
Source :
IEEE Transactions on Medical Imaging. Sept, 2008, Vol. 27 Issue 9, p1230, 12 p.
Publication Year :
2008

Abstract

In this paper, we propose an automatic method to detect microaneurysms in retina photographs. Microaneurysms are the most frequent and usually the first lesions to appear as a consequence of diabetic retinopathy. So, their detection is necessary for both screening the pathology and follow up (progression measurement). Automating this task, which is currently performed manually, would bring more objectivity and reproducibility. We propose to detect them by locally matching a lesion template in sub-bands of wavelet transformed images. To improve the method performance, we have searched for the best adapted wavelet within the lifting scheme framework. The optimization process is based on a genetic algorithm followed by Powell's direction set descent. Results are evaluated on 120 retinal images analyzed by an expert and the optimal wavelet is compared to different conventional mother wavelets. These images are of three different modalities: there are color photographs, green filtered photographs, and angiographs. Depending on the imaging modality, microaneurysms were detected with a sensitivity of respectively 89.62%, 90.24%, and 93.74% and a positive predictive value of respectively 89.50%, 89.75%, and 91.67%, which is better than previously published methods. Index Terms--Diabetic retinopathy, genetic algorithm, microaneurysms, optimal wavelet transform, template matching.

Details

Language :
English
ISSN :
02780062
Volume :
27
Issue :
9
Database :
Gale General OneFile
Journal :
IEEE Transactions on Medical Imaging
Publication Type :
Academic Journal
Accession number :
edsgcl.184643674