Back to Search Start Over

Stability of the fittest: organizing learning through retroaxonal signals

Authors :
Harris, Kenneth D.
Source :
Trends in Neurosciences. March, 2008, Vol. 31 Issue 3, p130, 7 p.
Publication Year :
2008

Abstract

Classically, neurons communicate by anterograde conduction of action potentials. However, information can also pass backward along axons, a process that is essential during the development of the nervous system. Here we propose a role for such 'retroaxonal' signals in adult learning. We hypothesize that strengthening of a neuron's output synapses stabilizes recent changes in the same neuron's inputs. During learning, the input synapses of many neurons undergo transient changes, resulting in altered spiking activity. If this in turn promotes strengthening of output synapses, the recent synaptic changes will be stabilized; otherwise they will decay. A representation of sensory stimuli therefore evolves that is tailored to the demands of behavioral tasks. We describe a candidate molecular mechanism for this process involving the activation of CREB by retrograde neurotrophin signals.

Details

Language :
English
ISSN :
01662236
Volume :
31
Issue :
3
Database :
Gale General OneFile
Journal :
Trends in Neurosciences
Publication Type :
Academic Journal
Accession number :
edsgcl.177954564