Back to Search
Start Over
GLP-2 rapidly activates divergent intracellular signaling pathways involved in intestinal cell survival and proliferation in neonatal piglets
- Source :
- The American Journal of Physiology. Jan, 2007, Vol. 292 Issue 1, pE281, 11 p.
- Publication Year :
- 2007
-
Abstract
- We previously demonstrated the dose-dependent glucagon-like peptide (GLP)-2 activation of intracellular signals associated with increased epithelial cell survival and proliferation in the neonatal intestine. Our current aim was to quantify the acute, temporal GLP-2 activation of these key intracellular signals and relate this to changes in epithelial cell survival and proliferation in the neonatal intestine. We studied 29 total parenteral nutrition-fed neonatal piglets infused intravenously with either saline (control) or human GLP-2 (420 [micro]mol * [kg.sup.-1] * [h.sup.-1]) for 1, 4, or 48 h. GLP-2 infusion increased small intestinal weight, DNA and protein content, and villus height at 48 h, but not at 1 or 4 h. Intestinal crypt and villus apoptosis decreased and crypt cell proliferation and protein synthesis increased linearly with duration of GLP-2 infusion, but were statistically different from controls only after 48 h. Before the morphological and cellular kinetic changes, GLP-2 rapidly activated putative GLP-2 receptor downstream signals within 1-4 h, including phosphorylation of protein kinase A, protein kinase B, extracellular signal-regulated kinase 1/2, and the transcription factors cAMP response element-binding protein and c-Fos. GLP-2 rapidly suppressed caspase-3 activation and upregulated Bcl-2 abundance within 1 h, whereas there was an increase in apoptosis inhibitors X-linked inhibitor of apoptosis at 1 h and cellular inhibitor of apoptosis-2 at 4 and 48 h. We also show that the increased c-Fos and reduced active caspase-3 immunostaining after GLP-2 infusion was localized in epithelial cells. We conclude that GLP-2-induced activation of intracellular signals involved in both cell survival and proliferation occurs rapidly and precedes the trophic cellular kinetic effects that occur later in intestinal epithelial cells. glucagon-like peptide-2; total parenteral nutrition
Details
- Language :
- English
- ISSN :
- 00029513
- Volume :
- 292
- Issue :
- 1
- Database :
- Gale General OneFile
- Journal :
- The American Journal of Physiology
- Publication Type :
- Academic Journal
- Accession number :
- edsgcl.159920227