Back to Search Start Over

Design and testing of frequency-selective surfaces on silicon substrates for submillimeter-wave applications

Authors :
Biber, Stephan
Bozzi, Maurizio
Gunther, Oliver
Perregrini, Luca
Schmidt, Lorenz-Peter
Source :
IEEE Transactions on Antennas and Propagation. Sept, 2006, Vol. 54 Issue 9, p2638, 8 p.
Publication Year :
2006

Abstract

A new class of frequency-selective surfaces (FSSs), to be used as quasi-optical filters for harmonic suppression in submillimeter-wave frequency multipliers, is proposed and experimentally verified. The FSSs consist of two-dimensional aperture arrays and are made from microstructured aluminum on electrically thick, high-resistivity silicon substrates. This leads to a very good mechanical stability, reasonably low insertion loss, and permits manufacture of the structure by using standard processes available from the semiconductor industries. This paper presents the design, fabrication, and testing of two sets of prototypes, the former with a passband at 300 GHz and a stopband at 450 GHz and the latter with a passband at 600 GHz and a stopband at 750 GHz. For both frequency ranges, FSSs with rectangular slots and with dogbone-shaped holes have been designed by using the method of moments/boundary integral-resonant mode expansion method. The effect of ohmic and dielectric losses has been determined by using the commercial code HFSS. Several prototypes have been fabricated, and measured by terahertz time-domain spectroscopy and continuous wave measurements, showing high reproducibility of the machining process, insertion loss between 1.0 and 1.6 dB, and stopband attenuation larger than 30 dB. Finally, we demonstrate that the incidence angle can be used as a degree of freedom for fine tuning the stopband, without practically changing the frequency response in the passband. Index Terms--Frequency multipliers, frequency-selective surfaces, quasi-optics, silicon, submillimeter-wave technology.

Details

Language :
English
ISSN :
0018926X
Volume :
54
Issue :
9
Database :
Gale General OneFile
Journal :
IEEE Transactions on Antennas and Propagation
Publication Type :
Academic Journal
Accession number :
edsgcl.151974831