Back to Search
Start Over
Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces
- Source :
- IEEE Transactions on Biomedical Engineering. June, 2006, Vol. 53 Issue 6, p1164, 10 p.
- Publication Year :
- 2006
-
Abstract
- Research on brain-machine interfaces (BMI's) is directed toward enabling paralyzed individuals to manipulate their environment through slave robots. Even for able-bodied individuals, using a robot to reach and grasp objects in unstructured environments can be a difficult telemanipulation task. Controlling the slave directly with neural signals instead of a hand-master adds further challenges, such as uncertainty about the intended trajectory coupled with a low update rate for the command signal. To address these challenges, a continuous shared control (CSC) paradigm is introduced for BMI where robot sensors produce reflex-like reactions to augment brain-controlled trajectories. To test the merits of this approach, CSC was implemented on a 3-degree-of-freedom robot with a gripper bearing three co-located range sensors. The robot was commanded to follow eighty-three reach-and-grasp trajectories estimated previously from the outputs of a population of neurons recorded from the brain of a monkey. Five different levels of sensor-based reflexes were tested. Weighting brain commands 70% and sensor commands 30% produced the best task performance, better than brain signals alone by more than seven-fold. Such a marked performance improvement in this test case suggests that some level of machine autonomy will be an important component of successful BMI systems in general. Index Terms--Brain-machine interface, neuroprosthesis, shared control, telerobotics.
Details
- Language :
- English
- ISSN :
- 00189294
- Volume :
- 53
- Issue :
- 6
- Database :
- Gale General OneFile
- Journal :
- IEEE Transactions on Biomedical Engineering
- Publication Type :
- Academic Journal
- Accession number :
- edsgcl.146835461