Back to Search Start Over

Neurobiology of mice selected for high voluntary wheel-running activity

Authors :
Rhodes, Justin S.
Gammie, Stephen C.
Garland, Theodore, Jr.
Source :
Integrative and Comparative Biology. June, 2005, Vol. 45 Issue 3, p438, 18 p.
Publication Year :
2005

Abstract

Selective breeding of house mice has been used to study the evolution of locomotor behavior. Our model consists of 4 replicate lines selectively bred for high voluntary wheel running (High-Runner) and 4 bred randomly (Control). The major changes in High-Runner lines appear to have taken place in the brain rather than in capacities for exercise. Their neurobiological profile resembles features of human Attention Deficit Hyperactivity Disorder (ADHD) and is also consistent with high motivation for exercise as a natural reward. Both ADHD and motivation for natural rewards (such as food and sex), as well as drugs of abuse, have been associated with alterations in function of the neuromodulator dopamine, and High-Runner mice respond differently to dopamine drugs. In particular, drugs that block the dopamine transporter protein (such as Ritalin and cocaine) reduce the high-intensity running of High-Runner mice but have little effect on Control mice. In preliminary studies of mice exercised on a treadmill, brain dopamine concentrations did not differ, suggesting that changes in the dopamine system may have occurred downstream of dopamine production (e.g., receptor expression or transduction). Brain imaging by immunohistochemical detection of c-Fos identified several key regions (prefrontal cortex, nucleus accumbens, caudateputamen, lateral hypothalamus) that appear to play a role in the differential response to Ritalin and in the increased motivation for running in High-Runner mice. The activation of other brain regions, such as the hippocampus, was closely associated with wheel running itself. Chronic wheel running (several weeks) also increased the production of new neurons to apparently maximal levels in the hippocampus, but impaired learning in High-Runner mice. We discuss the biomedical implications of these findings.

Details

Language :
English
ISSN :
15407063
Volume :
45
Issue :
3
Database :
Gale General OneFile
Journal :
Integrative and Comparative Biology
Publication Type :
Academic Journal
Accession number :
edsgcl.140305386