Back to Search Start Over

Improved algorithm for calculations of Rayleigh-scattering optical depth in standard atmospheres

Authors :
Tomasi, Claudio
Vitale, Vito
Petkov, Boyan
Lupi, Angelo
Cacciari, Alessandra
Source :
Applied Optics. June 1, 2005, Vol. 44 Issue 16, p3320, 22 p.
Publication Year :
2005

Abstract

Precise calculations of the total Rayleigh-scattering optical depth have been performed at 88 wavelengths ranging from 0.20 to 4.00 [micro]m for the six well-known standard atmosphere models by integrating the volume Rayleigh-scattering coefficient along the vertical atmospheric path from sea level to a 120-km height. The coefficient was determined by use of an improved algorithm based on the Ciddor algorithm [Appl. Opt. 35, 1566 (1996)], extended by us over the 0.20-0.23-[micro]m wavelength range to evaluate the moist air refractive index as a function of wavelength, air pressure, temperature, water-vapor partial pressure, and C[O.sub.2] volume concentration. The King depolarization factor was also defined taking into account the moisture conditions of air. The results indicate that the influence of water vapor on Rayleigh scattering cannot be neglected at tropospheric altitudes: for standard atmospheric conditions represented in terms of the U.S. Standard Atmosphere (1976) model, the relative variations produced by water vapor in the Rayleigh scattering parameters at a 0.50-[micro]m wavelength turn out to be equal to -0.10% in the moist air refractivity at sea level (where the water-vapor partial pressure is equal to [approximately equal to] 7.8 hPa), 0.04% in the sea-level King factor, - 0.24% in the sea-level Rayleigh-scattering cross section, and -0.06% in the Rayleigh-scattering optical depth. OCIS codes: 010.1310, 280.1310.

Details

Language :
English
ISSN :
1559128X
Volume :
44
Issue :
16
Database :
Gale General OneFile
Journal :
Applied Optics
Publication Type :
Academic Journal
Accession number :
edsgcl.133186781