Back to Search
Start Over
Electrothermal properties and modeling of polysilicon microthermal actuators
- Source :
- Journal of Microelectromechanical Systems. August, 2003, Vol. 12 Issue 4, p513, 11 p.
- Publication Year :
- 2003
-
Abstract
- This work addresses a range of issues on modeling electrothermal microactuators, including the physics of temperature dependent material properties and Finite Element Analysis modeling techniques. Electrical and thermal conductivity are a nonlinear function of temperature that can be explained with electron and phonon transport models, respectively. Parametric forms of these equations are developed for polysilicon and a technique to extract these parameters from experimental data is given. A modeling technique to capture the convective and conductive cooling effects on a thermal actuator in air is then presented. Using this modeling technique and the established polysilicon material properties, simulation results are compared with measured actuator responses. Both static and transient analyzes have been performed on two styles of actuators and the results compare well with measured data. [946] Index Terms--Electrothermal microactuator, modeling thermal actuator, polysilicon material properties.
Details
- Language :
- English
- ISSN :
- 10577157
- Volume :
- 12
- Issue :
- 4
- Database :
- Gale General OneFile
- Journal :
- Journal of Microelectromechanical Systems
- Publication Type :
- Academic Journal
- Accession number :
- edsgcl.107526226