Back to Search Start Over

Stratified Lie Groups and Potential Theory for Their Sub-Laplacians

Authors :
Andrea Bonfiglioli
Ermanno Lanconelli
Francesco Uguzzoni
Andrea Bonfiglioli
Ermanno Lanconelli
Francesco Uguzzoni
Publication Year :
2007

Abstract

The existence, for every sub-Laplacian, of a homogeneous fundamental solution smooth out of the origin, plays a crucial role in the book. This makes it possible to develop an exhaustive Potential Theory, almost completely parallel to that of the classical Laplace operator. This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. In recent years, sub-Laplacian operators have received considerable attention due to their special role in the theory of linear second-order PDE's with semidefinite characteristic form. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra nor in differential geometry. It is thus addressed, besides PhD students, to junior and senior researchers in different areas such as: partial differential equations; geometric control theory; geometric measure theory and minimal surfaces in stratified Lie groups.

Details

Language :
English
ISBNs :
9783540718963 and 9783540718970
Database :
eBook Index
Journal :
Stratified Lie Groups and Potential Theory for Their Sub-Laplacians
Publication Type :
eBook
Accession number :
3721777