Back to Search Start Over

What Determines an Algebraic Variety?

Authors :
János Kollár
Max Lieblich
Martin Olsson
Will Sawin
János Kollár
Max Lieblich
Martin Olsson
Will Sawin
Publication Year :
2023

Abstract

A pioneering new nonlinear approach to a fundamental question in algebraic geometryOne of the crowning achievements of nineteenth-century mathematics was the proof that the geometry of lines in space uniquely determines the Cartesian coordinates, up to a linear ambiguity. What Determines an Algebraic Variety? develops a nonlinear version of this theory, offering the first nonlinear generalization of the seminal work of Veblen and Young in a century. While the book uses cutting-edge techniques, the statements of its theorems would have been understandable a century ago; despite this, the results are totally unexpected. Putting geometry first in algebraic geometry, the book provides a new perspective on a classical theorem of fundamental importance to a wide range of fields in mathematics.Starting with basic observations, the book shows how to read off various properties of a variety from its geometry. The results get stronger as the dimension increases. The main result then says that a normal projective variety of dimension at least 4 over a field of characteristic 0 is completely determined by its Zariski topological space. There are many open questions in dimensions 2 and 3, and in positive characteristic.

Subjects

Subjects :
Algebraic varieties

Details

Language :
English
ISBNs :
9780691246802, 9780691246819, and 9780691246833
Volume :
00216
Database :
eBook Index
Journal :
What Determines an Algebraic Variety?
Publication Type :
eBook
Accession number :
3538792