Back to Search Start Over

Cooperative Control of Networked Vehicles

Authors :
Alexander Schwab
Alexander Schwab
Publication Year :
2022

Abstract

This thesis concerns the cooperative control of networked vehicles. Autonomous driving is a topic that is currently being discussed with great interest from researchers, vehicle man -ufacturers and the corresponding media. Future autonomous vehicles should bring the passengers to their desired destination while improving both safety and efficiency compared to current human-driven vehicles. The inherent problem of all vehicle coordination tasks is to guarantee collision avoidance in every situation. To this end, autonomous vehicles have to share information with each other in order to perform traffic manoeuvres that require the cooperation of multiple vehicles. The fundamental problem of vehicle platooning is studied extensively which describes the task of arranging a set of vehicles so that they drive with a common velocity and a prescribed distance. Local design objectives are derived that have to be satisfied by the vehicle controllers. In particular, it is shown that the vehicles have to be externally positive to achieve collision avoidance. As an abstraction from real traffic scenarios, swarms of networked vehicles are considered. The main difference be -tween swarming and traffic problems is that a communication structure that has been appropriate in the beginning might become unsuited for the control task due to the relative movement of the vehicles. To solve this problem, this thesis proposes to use the Delaunay triangulation as a switching communication structure.

Details

Language :
English
ISBNs :
9783832555498 and 9783832584337
Database :
eBook Index
Journal :
Cooperative Control of Networked Vehicles
Publication Type :
eBook
Accession number :
3455394