Back to Search Start Over

Accuracy of toric intraocular lens power calculation depending on different keratometry values using a novel network based software platform

Authors :
Michaela Ramsauer
Nikolaus Luft
Efstathios Vounotrypidis
Siegfried G. Priglinger
Wolfgang J. Mayer
Source :
Frontiers in Medicine, Vol 11 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

PurposeTo compare different corneal keratometry readings (swept-source-OCT-assisted biometry and Scheimpflug imaging) with a novel software platform for calculation of toric intraocular lenses.SettingDepartment of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany.DesignRetrospective, non-randomized, clinical trial.MethodsTwenty-three eyes undergoing toric intraocular lens implantation were included. Inclusion criteria were preoperative regular corneal astigmatism of at least 1.00 D, no previous refractive surgery, no ocular surface diseases and no maculopathies. Lens exchange was performed with CALLISTO eye (Zeiss). For each patient, the expected postoperative residual refraction was calculated depending on three different corneal parameters of two different devices: standard K-front (K) and total keratometry (TK) obtained by a swept-source-OCT-assisted biometry system (IOL Master 700, Zeiss) as well as total corneal refractive power (TCRP) obtained by a Scheimpflug device (Pentacam AXL, Oculus). Barrett’s formula for toric intraocular lenses was used for all calculations within a novel software platform (EQ workplace, Zeiss FORUM®). Results were statistically compared with postoperative refraction calculated according to the Harris dioptric power matrix.ResultsThe standard K values (mean PE 0.02 D ± 0.45 D) and TK values (mean PE 0.09 D ± 0.43 D) of the IOL Master 700 reached similar results (p = 0.96). 78% of eyes in both K and TK groups achieved SE within ±0.5 D of attempted correction and all eyes (100%) were within ±1.0 D of attempted correction in both groups. By contrast, the prediction error in the IOL calculation using the TCRP of the Scheimpflug device was significantly greater (mean PE −0.56 D ± 0.49 D; p = 0.00 vs. standard K and p = 0.00 vs. TK) with adjusted refractive indices. Thirty-nine and Ninety-one percentage of eyes in the TCRP group achieved SE within ±0.5 D (p = 0.008 K vs. TCRP and p = 0.005 TK vs. TCRP) and ± 1.0 D (p = 0.14 vs. TCRP) of attempted correction, respectively.ConclusionAll three corneal parameters (standard K, TK, TCRP) performed well in calculating toric IOLs. The most accurate refractive outcomes in toric IOL implantation were achieved by IOL calculations based on swept-source-OCT-assisted biometry. The SS-OCT-based K-front and TK values achieve comparable results in the calculation of toric IOLs.

Details

Language :
English
ISSN :
2296858X
Volume :
11
Database :
Directory of Open Access Journals
Journal :
Frontiers in Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.ffe9d2f3654d4a9f9f88fbc94c6cc985
Document Type :
article
Full Text :
https://doi.org/10.3389/fmed.2024.1363286