Back to Search Start Over

Automatic segmentation of ameloblastoma on ct images using deep learning with limited data

Authors :
Liang Xu
Kaixi Qiu
Kaiwang Li
Ge Ying
Xiaohong Huang
Xiaofeng Zhu
Source :
BMC Oral Health, Vol 24, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Ameloblastoma, a common benign tumor found in the jaw bone, necessitates accurate localization and segmentation for effective diagnosis and treatment. However, the traditional manual segmentation method is plagued with inefficiencies and drawbacks. Hence, the implementation of an AI-based automatic segmentation approach is crucial to enhance clinical diagnosis and treatment procedures. Methods We collected CT images from 79 patients diagnosed with ameloblastoma and employed a deep learning neural network model for training and testing purposes. Specifically, we utilized the Mask R-CNN neural network structure and implemented image preprocessing and enhancement techniques. During the testing phase, cross-validation methods were employed for evaluation, and the experimental results were verified using an external validation set. Finally, we obtained an additional dataset comprising 200 CT images of ameloblastoma from a different dental center to evaluate the model's generalization performance. Results During extensive testing and evaluation, our model successfully demonstrated the capability to automatically segment ameloblastoma. The DICE index achieved an impressive value of 0.874. Moreover, when the IoU threshold ranged from 0.5 to 0.95, the model's AP was 0.741. For a specific IoU threshold of 0.5, the model achieved an AP of 0.914, and for another IoU threshold of 0.75, the AP was 0.826. Our validation using external data confirms the model's strong generalization performance. Conclusion In this study, we successfully applied a neural network model based on deep learning that effectively performs automatic segmentation of ameloblastoma. The proposed method offers notable advantages in terms of efficiency, accuracy, and speed, rendering it a promising tool for clinical diagnosis and treatment.

Details

Language :
English
ISSN :
14726831
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Oral Health
Publication Type :
Academic Journal
Accession number :
edsdoj.ff6419517cbe48d8a49477c5217cf211
Document Type :
article
Full Text :
https://doi.org/10.1186/s12903-023-03587-7