Back to Search Start Over

Earthquake Magnitude Estimation from High-Rate GNSS Data: A Case Study of the 2021 Mw 7.3 Maduo Earthquake

Authors :
Zhiyu Gao
Yanchuan Li
Xinjian Shan
Chuanhua Zhu
Source :
Remote Sensing, Vol 13, Iss 21, p 4478 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Peak ground displacement (PGD) and peak ground velocity (PGV) are critical parameters during earthquake early warning, as they can provide rapid magnitude estimation before rupture end. In this study, we used the high-rate Global Navigation Satellite System (GNSS) data from 55 continuous stations to estimate the magnitude of the 2021 Maduo earthquake in western China. We used the relative positioning method and variometric approach to acquire real-time GNSS displacement and velocity waveforms, respectively. The results showed the amplitude of displacement and velocity waveforms gradually decreased with increasing hypocentral distance. Our results showed that the fluctuation of PGD magnitudes over time is smaller than that of PGV magnitudes. Nonetheless, the earthquake magnitudes estimated from both methods were consistent with their counterparts (Mw 7.3) reported by the United States Geological Survey (USGS). The final magnitude estimated from the PGD and PGV methods were Mw 7.25 and Mw 7.31, respectively. In addition, our results highlighted how the number of high-rate GNSS stations could influence the stability and convergence time of magnitude estimation.

Details

Language :
English
ISSN :
20724292
Volume :
13
Issue :
21
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.ff551e96d0ab443487beec702ff26664
Document Type :
article
Full Text :
https://doi.org/10.3390/rs13214478