Back to Search Start Over

Ultrafast all-optical toggle writing of magnetic bits without relying on heat

Authors :
T. Zalewski
A. Maziewski
A. V. Kimel
A. Stupakiewicz
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-8 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Ultrafast excitation of matter can violate Curie’s principle that the symmetry of the cause must be found in the symmetry of the effect. For instance, heating alone cannot result in a deterministic reversal of magnetization. However, if the heating is ultrafast, it facilitates toggle switching of magnetization between stable bit-states without any magnetic field. Here we show that the regime of ultrafast toggle switching can be also realized via a mechanism without relying on heat. Ultrafast laser excitation of iron-garnet with linearly polarized light modifies magnetic anisotropy and thus causes toggling magnetization between two stable bit states. This new regime of ‘cold’ toggle switching can be observed in ferrimagnets without a compensation point and over an exceptionally broad temperature range. The control of magnetic anisotropy required for the toggle switching exhibits reduced dissipation compared to laser-induced-heating mechanism, however the dissipation and the switching-time are shown to be competing parameters.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.ff520f31572f40e58191f1c7b355577e
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-48438-3