Back to Search Start Over

Modelling spatiotemporal patterns of visceral leishmaniasis incidence in two endemic states in India using environment, bioclimatic and demographic data, 2013-2022.

Authors :
Swaminathan Subramanian
Rajendran Uma Maheswari
Gopalakrishnan Prabavathy
Mashroor Ahmad Khan
Balan Brindha
Adinarayanan Srividya
Ashwani Kumar
Manju Rahi
Emily S Nightingale
Graham F Medley
Mary M Cameron
Nupur Roy
Purushothaman Jambulingam
Source :
PLoS Neglected Tropical Diseases, Vol 18, Iss 2, p e0011946 (2024)
Publication Year :
2024
Publisher :
Public Library of Science (PLoS), 2024.

Abstract

BackgroundAs of 2021, the National Kala-azar Elimination Programme (NKAEP) in India has achieved visceral leishmaniasis (VL) elimination (Methodology/principal findingsWe employed spatiotemporal models incorporating environment, climatic and demographic factors as covariates to describe monthly VL cases for 8-years (2013-2020) in 491 and 27 endemic and non-endemic blocks of Bihar and Jharkhand states. We fitted 37 models of spatial, temporal, and spatiotemporal interaction random effects with covariates to monthly VL cases for 6-years (2013-2018, training data) using Bayesian inference via Integrated Nested Laplace Approximation (INLA) approach. The best-fitting model was selected based on deviance information criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC) and was validated with monthly cases for 2019-2020 (test data). The model could describe observed spatial and temporal patterns of VL incidence in the two states having widely differing incidence trajectories, with >93% and 99% coverage probability (proportion of observations falling inside 95% Bayesian credible interval for the predicted number of VL cases per month) during the training and testing periods. PIT (probability integral transform) histograms confirmed consistency between prediction and observation for the test period. Forecasting for 2021-2023 showed that the annual VL incidence is likely to exceed elimination threshold in 16-18 blocks in 4 districts of Jharkhand and 33-38 blocks in 10 districts of Bihar. The risk of VL in non-endemic neighbouring blocks of both Bihar and Jharkhand are less than 0.5 during the training and test periods, and for 2021-2023, the probability that the risk greater than 1 is negligible (PConclusions/significanceThe spatiotemporal model incorporating environmental, bioclimatic, and demographic factors demonstrated that the KAMIS database of the national programmme can be used for block level predictions of long-term spatial and temporal trends in VL incidence and risk of outbreak / resurgence in endemic and non-endemic settings. The database integrated with the modelling framework and a dashboard facility can facilitate such analysis and predictions. This could aid the programme to monitor progress of VL elimination at least one-year ahead, assess risk of resurgence or outbreak in post-elimination settings, and implement timely and targeted interventions or preventive measures so that the NKAEP meet the target of achieving elimination by 2030.

Details

Language :
English
ISSN :
19352727 and 19352735
Volume :
18
Issue :
2
Database :
Directory of Open Access Journals
Journal :
PLoS Neglected Tropical Diseases
Publication Type :
Academic Journal
Accession number :
edsdoj.ff3d7b4c47df42b08f36a522fc0de364
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pntd.0011946&type=printable