Back to Search Start Over

Parallel Spectral–Spatial Attention Network with Feature Redistribution Loss for Hyperspectral Change Detection

Authors :
Yixiang Huang
Lifu Zhang
Changping Huang
Wenchao Qi
Ruoxi Song
Source :
Remote Sensing, Vol 15, Iss 1, p 246 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Change detection methods using hyperspectral remote sensing can precisely identify differences of the same area at different observing times. However, due to massive spectral bands, current change detection methods are vulnerable to unrelatedspectral and spatial information in hyperspectral images with the stagewise calculation of attention maps. Besides, current change methods arrange hidden change features in a random distribution form, which cannot express a class-oriented discrimination in advance. Moreover, existent deep change methods have not fully considered the hierarchical features’ reuse and the fusion of the encoder–decoder framework. To better handle the mentioned existent problems, the parallel spectral–spatial attention network with feature redistribution loss (TFR-PS2ANet) is proposed. The contributions of this article are summarized as follows: (1) a parallel spectral–spatial attention module (PS2A) is introduced to enhance relevant information and suppress irrelevant information in parallel using spectral and spatial attention maps extracted from the original hyperspectral image patches; (2) the feature redistribution loss function (FRL) is introduced to construct the class-oriented feature distribution, which organizes the change features in advance and improves the discriminative abilities; (3) a two-branch encoder–decoder framework is developed to optimize the hierarchical transfer and change features’ fusion; Extensive experiments were carried out on several real datasets. The results show that the proposed PS2A can enhance significant information effectively and the FRL can optimize the class-oriented feature distribution. The proposed method outperforms most existent change detection methods.

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.fefb3e38d43145a9ae31746267d65db2
Document Type :
article
Full Text :
https://doi.org/10.3390/rs15010246