Back to Search Start Over

TRP Channels: Current Perspectives in the Adverse Cardiac Remodeling

Authors :
Debora Falcón
Isabel Galeano-Otero
Eva Calderón-Sánchez
Raquel Del Toro
Marta Martín-Bórnez
Juan A. Rosado
Abdelkrim Hmadcha
Tarik Smani
Source :
Frontiers in Physiology, Vol 10 (2019)
Publication Year :
2019
Publisher :
Frontiers Media S.A., 2019.

Abstract

Calcium is an important second messenger required not only for the excitation-contraction coupling of the heart but also critical for the activation of cell signaling pathways involved in the adverse cardiac remodeling and consequently for the heart failure. Sustained neurohumoral activation, pressure-overload, or myocardial injury can cause pathologic hypertrophic growth of the heart followed by interstitial fibrosis. The consequent heart’s structural and molecular adaptation might elevate the risk of developing heart failure and malignant arrhythmia. Compelling evidences have demonstrated that Ca2+ entry through TRP channels might play pivotal roles in cardiac function and pathology. TRP proteins are classified into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin), and TRPP (polycystin), which are activated by numerous physical and/or chemical stimuli. TRP channels participate to the handling of the intracellular Ca2+ concentration in cardiac myocytes and are mediators of different cardiovascular alterations. This review provides an overview of the current knowledge of TRP proteins implication in the pathologic process of some frequent cardiac diseases associated with the adverse cardiac remodeling such as cardiac hypertrophy, fibrosis, and conduction alteration.

Details

Language :
English
ISSN :
1664042X
Volume :
10
Database :
Directory of Open Access Journals
Journal :
Frontiers in Physiology
Publication Type :
Academic Journal
Accession number :
edsdoj.feef09e17daf4f5f99ba75bacd422c7b
Document Type :
article
Full Text :
https://doi.org/10.3389/fphys.2019.00159