Back to Search
Start Over
Exploiting Obstacle Geometry to Reduce Search Time in Grid-Based Pathfinding
- Source :
- Symmetry, Vol 12, Iss 7, p 1186 (2020)
- Publication Year :
- 2020
- Publisher :
- MDPI AG, 2020.
-
Abstract
- Pathfinding is the problem of finding the shortest path between a pair of nodes in a graph. In the context of uniform-cost undirected grid maps, heuristic search algorithms, such as A ★ and weighted A ★ ( W A ★ ), have been dominantly used for pathfinding. However, the lack of knowledge about obstacle shapes in a gird map often leads heuristic search algorithms to unnecessarily explore areas where a viable path is not available. We refer to such areas in a grid map as blocked areas (BAs). This paper introduces a preprocessing algorithm that analyzes the geometry of obstacles in a grid map and stores knowledge about blocked areas in a memory-efficient balanced binary search tree data structure. During actual pathfinding, a search algorithm accesses the binary search tree to identify blocked areas in a grid map and therefore avoid exploring them. As a result, the search time is significantly reduced. The scope of the paper covers maps in which obstacles are represented as horizontal and vertical line-segments. The impact of using the blocked area knowledge during pathfinding in A ★ and W A ★ is evaluated using publicly available benchmark set, consisting of sixty grid maps of mazes and rooms. In mazes, the search time for both A ★ and W A ★ is reduced by 28 % , on average. In rooms, the search time for both A ★ and W A ★ is reduced by 30 % , on average. This is achieved while preserving the search optimality of A ★ and the search sub-optimality of W A ★ .
Details
- Language :
- English
- ISSN :
- 20738994
- Volume :
- 12
- Issue :
- 7
- Database :
- Directory of Open Access Journals
- Journal :
- Symmetry
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.fec4ee02356d484ba34843c2af837539
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/sym12071186