Back to Search Start Over

Jet aircraft lubrication oil droplets as contrail ice-forming particles

Authors :
J. Ponsonby
L. King
B. J. Murray
M. E. J. Stettler
Source :
Atmospheric Chemistry and Physics, Vol 24, Pp 2045-2058 (2024)
Publication Year :
2024
Publisher :
Copernicus Publications, 2024.

Abstract

The radiative characteristics and lifetimes of contrails are dependent on the number concentration of ice-forming particles in the engine exhaust plume. Aircraft gas turbine engines produce a variety of particles, yet it is understood that non-volatile black carbon aggregates are the dominant source of ice-forming particles with typical, fossil-derived jet fuel. However, with cleaner combustion technologies and the adoption of alternative fuels (e.g. hydrogen or synthetic aviation fuel), non-volatile black carbon particle emissions are expected to decrease or even be eliminated. Under these conditions, contrail properties will depend upon the concentration and characteristics of particles other than black carbon. Ultrafine (< 100 nm) jet lubrication oil droplets constitute a significant fraction of the total organic particulate matter released by aircraft; however, their ability to form contrail ice crystals has hitherto been unexplored. In this work, we experimentally investigate the activation and freezing behaviour of lubrication oil droplets using an expansion chamber, assessing their potential as ice-forming particles. We generate lubrication oil droplets with a geometric mean mobility diameter of (100.9 ± 0.6) nm and show that these activate to form water droplets, which subsequently freeze when the temperature is below ∼ 235 K. We find that nucleation on lubrication oil droplets should be considered in future computational studies – particularly under soot-poor conditions – and that these studies would benefit from particle size distribution measurements at cruise altitude. Overall, taking steps to reduce lubrication oil number emissions would help reduce the climate impact of contrail cirrus.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
24
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.fe25430790ac4221a74f7e0de121867d
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-24-2045-2024