Back to Search
Start Over
A rapid LAMP assay for the diagnosis of oak wilt with the naked eye
- Source :
- Plant Methods, Vol 20, Iss 1, Pp 1-12 (2024)
- Publication Year :
- 2024
- Publisher :
- BMC, 2024.
-
Abstract
- Abstract Background Oak wilt disease, caused by Bretziella fagacearum is a significant threat to oak (Quercus spp.) tree health in the United States and Eastern Canada. The disease may cause dramatic damage to natural and urban ecosystems without management. Early and accurate diagnosis followed by timely treatment increases the level of disease control success. Results A rapid assay based on loop mediated isothermal amplification (LAMP) was first developed with fluorescence detection of B. fagacearum after 30-minute reaction time. Six different primers were designed to specifically bind and amplify the pathogen’s DNA. To simplify the use of this assay in the field, gold nanoparticles (AuNPs) were designed to bind to the DNA amplicon obtained from the LAMP reaction. Upon inducing precipitation, the AuNP-amplicons settle as a red pellet visible to the naked eye, indicative of pathogen presence. Both infected and healthy red oak samples were tested using this visualization method. The assay was found to have high diagnostic sensitivity and specificity for the B. fagacearum isolate studied. Moreover, the developed assay was able to detect the pathogen in crude DNA extracts of diseased oak wood samples, which further reduced the time required to process samples. Conclusions In summary, the LAMP assay coupled with oligonucleotide-conjugated gold nanoparticle visualization is a promising method for accurate and rapid molecular-based diagnosis of B. fagacearum in field settings. The new method can be adapted to other forest and plant diseases by simply designing new primers.
Details
- Language :
- English
- ISSN :
- 17464811
- Volume :
- 20
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Plant Methods
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.fe09cb673cc04370924681d03e6a3a69
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s13007-024-01254-8