Back to Search Start Over

Demonstration of microwave single-shot quantum key distribution

Authors :
Florian Fesquet
Fabian Kronowetter
Michael Renger
Wun Kwan Yam
Simon Gandorfer
Kunihiro Inomata
Yasunobu Nakamura
Achim Marx
Rudolf Gross
Kirill G. Fedorov
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-8 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Security of modern classical data encryption often relies on computationally hard problems, which can be trivialized with the advent of quantum computers. A potential remedy for this is quantum communication which takes advantage of the laws of quantum physics to provide secure exchange of information. Here, quantum key distribution (QKD) represents a powerful tool, allowing for unconditionally secure quantum communication between remote parties. At the same time, microwave quantum communication is set to play an important role in future quantum networks because of its natural frequency compatibility with superconducting quantum processors and modern near-distance communication standards. To this end, we present an experimental realization of a continuous-variable QKD protocol based on propagating displaced squeezed microwave states. We use superconducting parametric devices for generation and single-shot quadrature detection of these states. We demonstrate unconditional security in our experimental microwave QKD setting. The security performance is shown to be improved by adding finite trusted noise on the preparation side. Our results indicate feasibility of secure microwave quantum communication with the currently available technology in both open-air (up to ~ 80 m) and cryogenic (over 1000 m) conditions.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.fdc9ccee9574aabbf70d398a8986bc1
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-51421-7